Product Description

Item No. φD L L1 L2 M Tighten the strength(N.m)
SG7-6-40- 40 55 19 24 M3 3
SG7-6-55- 55 65 22 31 M4 6
SG7-6-65- 65 76 27 37 M5 8
SG7-6-82- 82 88 32 41 M6 10
SG7-6-90- 90 88 32 41 M6 12

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112111111111111111111111111111111111111111111111

Item No. Rated torque Maximum Torque Max Speed Inertia Moment N.m rad RRO Tilting Tolerance End-play Weight:(g)
SG7-6-40- 13N.m 26N.m 8000prm 9×10-5kg.m² 15×103N.m/rad 0.15mm 2c 1mm 231
SG7-6-55- 28N.m 56N.m 6000prm 2.9×10-4kg.m² 28×103N.m/rad 0.2mm 2c 1.5mm 485
SG7-6-65- 60N.m 120N.m 5000prm 4.6×10-4kg.m² 55×103N.m/rad 0.25mm 2c 1.5mm 787
SG7-6-82- 150N.m 300N.m 4500prm 1.1×10-3kg.m² 110×103N.m/rad 0.28mm 2c 1.5mm 1512
SG7-6-90- 200N.m 400N.m 4000prm 2×10-3kg.m² 140×103N.m/rad 0.3mm 2c 1.5mm 1800

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

bellows coupling

Can Bellows Couplings Handle Angular and Parallel Misalignments Simultaneously?

Bellows couplings are designed to handle both angular and parallel misalignments simultaneously, making them versatile for various mechanical power transmission applications. The bellows element, typically made of a thin-walled metal structure, allows for flexibility in multiple directions, enabling the coupling to accommodate different types of misalignments.

1. Angular Misalignment: Angular misalignment occurs when the driving and driven shafts are not collinear and form an angle with each other. This type of misalignment can happen in applications where the shafts are not perfectly aligned due to assembly errors, shaft deflection, or thermal expansion. The bellows coupling’s design allows it to flex in response to angular misalignment, transmitting torque smoothly without inducing additional stress on the connected components.

2. Parallel Misalignment: Parallel misalignment, also known as lateral misalignment, happens when the axes of the driving and driven shafts are parallel but not concentric. This misalignment may occur due to inaccurate alignment during installation or shaft deflection under load. The bellows coupling’s flexible bellows element can also compensate for this type of misalignment, ensuring that the shafts remain parallel enough to prevent excessive forces and vibrations.

Simultaneous Misalignments: Bellows couplings are unique in their ability to handle both angular and parallel misalignments simultaneously. As the bellows element flexes in multiple directions, it can compensate for misalignments in both planes without imposing significant side loads on the shafts or bearings. This capability makes bellows couplings well-suited for precision motion control systems, where maintaining accurate alignment is crucial to ensure smooth operation and longevity of the equipment.

It is important to note that while bellows couplings can handle a certain degree of misalignment, excessive misalignments should be avoided to prevent premature wear and reduce the efficiency of the coupling. Regular maintenance and inspections can help identify and correct misalignment issues early, ensuring optimal performance and extended service life of the bellows coupling and the entire mechanical system.

bellows coupling

Can Bellows Couplings Be Used in Applications Requiring Electrical Isolation Between Shafts?

Yes, bellows couplings can be used in applications that require electrical isolation between shafts. The bellows coupling’s design inherently provides electrical isolation due to the absence of physical contact between the metal components. This feature makes bellows couplings well-suited for scenarios where electrical continuity must be maintained or prevented between the connected shafts.

In certain industrial setups, such as in motor-driven systems or equipment utilizing sensitive electronics, maintaining electrical isolation is crucial to prevent interference or electrical currents from flowing between the driving and driven shafts. In such cases, a bellows coupling acts as an ideal solution because the bellows element, made of non-conductive material, separates the two shaft ends while still transmitting torque.

Additionally, the material used for the bellows element can be selected to ensure optimal electrical insulation properties. For example, using materials like stainless steel or aluminum for the bellows ensures high electrical resistance and prevents any current leakage or conduction through the coupling.

By providing electrical isolation, bellows couplings help in safeguarding sensitive electronic components, minimizing the risk of electrical damage or interference, and ensuring the reliability and performance of the overall system.

bellows coupling

How do you Select the Right Bellows Coupling for Specific Motion Control Systems?

Selecting the right bellows coupling for a motion control system involves considering several key factors to ensure optimal performance and reliability. Here are the steps to help you make an informed decision:

  1. Application Requirements: Understand the specific requirements of your motion control system. Consider factors such as torque capacity, speed, angular misalignment, axial motion, and environmental conditions.
  2. Type of Bellows Coupling: Determine the type of bellows coupling that best suits your application. Choose from single bellows, double bellows, flexible beam with bellows, torsionally rigid, miniature, or high-temperature bellows coupling, depending on your needs.
  3. Torsional Stiffness: If your application requires high torsional stiffness to maintain precise motion control, consider bellows couplings with torsionally rigid designs.
  4. Misalignment Compensation: Evaluate the amount of misalignment your system may encounter and choose a bellows coupling with the appropriate misalignment compensation capabilities.
  5. Torque and Speed Ratings: Check the torque and speed ratings of the coupling to ensure they meet or exceed the requirements of your motion control system.
  6. Space Constraints: Consider the available space for the coupling. For applications with limited space, miniature or compact bellows couplings may be suitable.
  7. Environmental Conditions: If your application involves extreme temperatures or corrosive environments, opt for a high-temperature or corrosion-resistant bellows coupling material.
  8. Customization: Some applications may require customized solutions. In such cases, consult with coupling manufacturers to explore the possibility of tailored designs.
  9. Consult with Experts: When in doubt, seek advice from coupling manufacturers or engineering experts who can offer valuable insights and recommendations based on your specific application needs.

By carefully considering these factors, you can select the right bellows coupling that aligns with your motion control system’s requirements and ensures smooth and efficient power transmission. Additionally, choosing high-quality and reputable coupling suppliers will contribute to the overall success and reliability of your motion control application.

China Hot selling CNC Machine Bellow Type Flexible Motor Shaft Couplings  China Hot selling CNC Machine Bellow Type Flexible Motor Shaft Couplings
editor by CX 2024-05-09