Product Description

Product Name Oldham coupling
Material Aluminum 
Type OC16-63
Structure  Setscrew and Clamp
Bore size  3-30mm
Weight  7-450 g/pcs
packing plastic bag +paper box +wooden box +wooden pallet

1. Engineering: machine tools, foundry equipments, conveyors, compressors, painting systems, etc.

2. Pharmaceuticals& Food Processing: pulp mill blowers, conveyor in warehouse, agitators, grain, boiler, bakery machine, labeling machine, robots, etc.

3. Agriculture Industries: cultivator, rice winnower tractor, harvester, rice planter, farm equipment, etc.

4. Texitile Mills: looms, spinning, wrappers, high-speed auto looms, processing machine, twister, carding machine, ruler calendar machine, high speed winder, etc.

5. Printing Machinery: newspaper press, rotary machine, screen printer machine, linotype machine offset printer, etc.

6. Paper Industries: chipper roll grinder, cut off saw, edgers, flotation cell and chips saws, etc.

7. Building Construction Machinery: buffers, elevator floor polisher mixing machine, vibrator, hoists, crusher, etc.

8. Office Equipments: typewriter, plotters, camera, money drive, money sorting machine, data storage equipment, etc.

9. Glass and Plastic Industries: conveyor, carton sealers, grinders, creeper paper manufacturing machine, lintec backing, etc.

10. Home Appliances: vacuum cleaner, laundry machine, icecream machine, sewing machine, kitchen equipments, etc.

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

bellows coupling

Can Bellows Couplings Handle Angular and Parallel Misalignments Simultaneously?

Bellows couplings are designed to handle both angular and parallel misalignments simultaneously, making them versatile for various mechanical power transmission applications. The bellows element, typically made of a thin-walled metal structure, allows for flexibility in multiple directions, enabling the coupling to accommodate different types of misalignments.

1. Angular Misalignment: Angular misalignment occurs when the driving and driven shafts are not collinear and form an angle with each other. This type of misalignment can happen in applications where the shafts are not perfectly aligned due to assembly errors, shaft deflection, or thermal expansion. The bellows coupling’s design allows it to flex in response to angular misalignment, transmitting torque smoothly without inducing additional stress on the connected components.

2. Parallel Misalignment: Parallel misalignment, also known as lateral misalignment, happens when the axes of the driving and driven shafts are parallel but not concentric. This misalignment may occur due to inaccurate alignment during installation or shaft deflection under load. The bellows coupling’s flexible bellows element can also compensate for this type of misalignment, ensuring that the shafts remain parallel enough to prevent excessive forces and vibrations.

Simultaneous Misalignments: Bellows couplings are unique in their ability to handle both angular and parallel misalignments simultaneously. As the bellows element flexes in multiple directions, it can compensate for misalignments in both planes without imposing significant side loads on the shafts or bearings. This capability makes bellows couplings well-suited for precision motion control systems, where maintaining accurate alignment is crucial to ensure smooth operation and longevity of the equipment.

It is important to note that while bellows couplings can handle a certain degree of misalignment, excessive misalignments should be avoided to prevent premature wear and reduce the efficiency of the coupling. Regular maintenance and inspections can help identify and correct misalignment issues early, ensuring optimal performance and extended service life of the bellows coupling and the entire mechanical system.

bellows coupling

Can Bellows Couplings Be Used in Applications Requiring Electrical Isolation Between Shafts?

Yes, bellows couplings can be used in applications that require electrical isolation between shafts. The bellows coupling’s design inherently provides electrical isolation due to the absence of physical contact between the metal components. This feature makes bellows couplings well-suited for scenarios where electrical continuity must be maintained or prevented between the connected shafts.

In certain industrial setups, such as in motor-driven systems or equipment utilizing sensitive electronics, maintaining electrical isolation is crucial to prevent interference or electrical currents from flowing between the driving and driven shafts. In such cases, a bellows coupling acts as an ideal solution because the bellows element, made of non-conductive material, separates the two shaft ends while still transmitting torque.

Additionally, the material used for the bellows element can be selected to ensure optimal electrical insulation properties. For example, using materials like stainless steel or aluminum for the bellows ensures high electrical resistance and prevents any current leakage or conduction through the coupling.

By providing electrical isolation, bellows couplings help in safeguarding sensitive electronic components, minimizing the risk of electrical damage or interference, and ensuring the reliability and performance of the overall system.

bellows coupling

What is a Bellows Coupling, and How is it Used in Mechanical Power Transmission?

A bellows coupling is a type of flexible coupling used in mechanical power transmission systems to connect two shafts while allowing for angular misalignment, axial motion, and torsional flexibility. It consists of a thin-walled metallic bellows element that resembles an accordion or bellows, which gives the coupling its name. The bellows is typically made of stainless steel, providing it with the necessary flexibility and durability for various applications.

When used in mechanical power transmission, a bellows coupling accommodates misalignments between the connected shafts. These misalignments can be in the form of angular misalignment, where the shafts are not perfectly aligned in a straight line, or axial misalignment, where there is some linear movement along the shaft axis. Additionally, the bellows element provides torsional flexibility, allowing the coupling to transmit torque while compensating for slight shaft misalignments.

The bellows coupling works by absorbing and redistributing the misalignment forces through the flexing of the bellows element. As the shafts rotate, any misalignment causes the bellows to flex, allowing the coupling to maintain a continuous transmission of torque while reducing stress on the connected shafts. This flexibility also helps dampen vibrations and shock loads, protecting the connected components from excessive wear and fatigue.

One of the significant advantages of using a bellows coupling is its high torsional stiffness. The bellows element provides excellent torsional rigidity, making it suitable for applications where precise motion control and minimal torsional backlash are essential.

Bellows couplings find applications in various industries, including robotics, aerospace, medical devices, semiconductor manufacturing, and precision machinery. They are commonly used in applications where accurate positioning, high torque transmission, and compensating for misalignments are critical requirements.

In summary, a bellows coupling is a flexible and robust coupling solution that allows for angular misalignment, axial motion, and torsional flexibility in mechanical power transmission systems. Its ability to accommodate misalignments while maintaining high torsional stiffness makes it a preferred choice in precision positioning and motion control applications.

China Good quality Good Quality Cheap D16*L27 Metal Bellow Couplings Flexible Jaw Shaft Coupling for Encoder Motor  China Good quality Good Quality Cheap D16*L27 Metal Bellow Couplings Flexible Jaw Shaft Coupling for Encoder Motor
editor by CX 2024-01-19